Quantum Physics of Semiconductor Materials and Devices

Quantum Physics of Semiconductor Materials and Devices

Jena, Debdeep

Oxford University Press






15 a 20 dias


Descrição não disponível.
I Fundamentals
1: And Off We Go!
2: Secrets of the Classical Electron
3: Quantum Mechanics in a Nutshell
4: Damned Lies, and Statistics
5: Electrons in the Quantum World
6: Red or Blue pill: Befriending the Matrix
7: Perturbations to the Electron's Freedom
II Bands, Doping, and Heterostructures
8: Electrons in a Crystal get their Bands, Gaps and Masses
9: Bloch theorem, Bandstructure, and Quantum Currents
10: Crystal Clear: Bandstructure of the Empty Lattice
11: Tight-Binding Bandstructure
12: k . p Bandstructure
13: 1, 2, 3 ...: Pseudopotentials and Exact Bandstructure
14: Doping and Heterostructures: The Effective Mass Method
15: Carrier Statistics and Energy Band Diagrams
16: Controlling Electron Traffic in the k-Space
III Quantum Electronics with Semiconductors
17: Game of Modes: Quantized R, L, and C
18: Junction Magic: Schottky, pn and Bipolar Transistors
19: Zeroes and Ones: The Ballistic Transistor
20: Fermi's Golden Rule
21: No Turning Back: The Boltzmann Transport Equation
22: Taking the Heat: Phonons and Electron-Phonon Interactions
23: Scattering, Mobility, and Velocity Saturation
24: Through the Barrier: Tunneling & Avalanches
25: Running Circles: Quantum Magnetotransport
IV Quantum Photonics with Semiconductors
26: Let there be Light: Maxwell Equations
27: Light-Matter Interaction
28: Heavenly Light: Solar Cells and Photodetectors
29: Reach for the stars: Lasers and LEDs
30: Every End is a New Beginning