Mechanizing Hypothesis Formation

Mechanizing Hypothesis Formation

Principles and Case Studies

Simunek, Milan; Masa, Petr; Rauch, Jan; Chudan, David

Taylor & Francis Ltd

10/2022

346

Dura

Inglês

9780367549800

15 a 20 dias

1300

Descrição não disponível.
1. Introduction 2. Data Sets SECTION I: THE GUHA PROCEDURES 3. Principle and Simple Examples 4. Common Features 5. LISp-Miner System SECTION II: APPLYING THE GUHA PROCEDURES 6. Examples Overview 7. 4ft-Miner - GUHA Association Rules 8. CF-Miner - Histograms 9. KL-Miner - Pairs of Categorical Attributes 10. SD-4ft-Miner - Couples of GUHA Association Rules 11. SDCF-Miner - Couples of Histograms 12. SDKL-Miner - Couples of Pairs of Categorical Attributes 13. Ac4ft-Miner - Action Rules 14. GUHA Procedures and Business Intelligence 15. CleverMiner - GUHA and Python SECTION III: RELATED RESEARCH AND THEORY 16. Artificial Data Generation and LM ReverseMiner Module 17. Applying Domain Knowledge 18. Observational Calculi
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Exception rules;Subgroups discovery;Action rules;GUHA method;Logical calculi for data mining;Observational calculi;Boolean Attributes;UCI Machine Learn Repository;Adult Dataset;Association Rules;Data Matrix;Apriori Algorithm;Relative Frequencies;Conditional Histograms;Accidents Dataset;Boolean Characteristics;Analysed Data Matrix;Contingency Table;Kendall's Coefficients;Deduction Rules;Arules Package;Categorical Attributes;Ordinal Dependence;Service Business Intelligence;Generalized Quantifiers;Data Mining Tasks;UCI;Set Cond;Accidents Data Set;Relevant Antecedents