Handbook of Statistical Analysis

Handbook of Statistical Analysis

AI and ML Applications

Miner, Gary D.; McCormick, Keith; Nisbet, Robert

Elsevier Science Publishing Co Inc

12/2024

650

Mole

Inglês

9780443158452

Pré-lançamento - envio 15 a 20 dias após a sua edição

Descrição não disponível.
Part I - Introduction
1. Historical Background to Analytics
2. Theory
3. Data Mining and Predictive Analytic Process
4. Data Science Tool Types: Which one is Best?

Part II - Data Preparation
5. Data Access
6. Data Understanding
7. Data Visualization
8. Data Cleaning
9. Data Conditioning
10. Feature Engineering
11. Feature Selection
12. Data Preparation Cookbook

Part III - Modeling

13. Algorithms
14. Modeling
15. Model Evaluation and Enhancement
16. Ensembles & Complexity
17. Deep Learning vs. Traditional ML
18. Explainable AI (XAI) put after Deep Learning
19. Human in the Loop

Part IV - Applications
20. GENERAL OVERVIEW of an Application - Healthcare Delivery and Medical Informatics
21. Specific Application: Business: Customer Response
22. Specific Application: Education: Learning Analytics
23. Specific Application: Medical Informatics: Colon Cancer Screening
24. Specific Application: Financial: Credit Risk
25. Specific FUTURE Application: The 'INTELLIGENCE AGE (Revolution)': LLMs like ChatGPT - Tiny ML - H.U.M.A.N.E. - Etc.

Part V - Right Models - Luck - & Ethics of Analytics
26. Right Model for the Right Use
27. Ethics in Data Science
28. Significance of Luck

Part VI - Tutorials and Case Studies
Tutorial A Example of Data Mining Recipes Using Statistica Data Miner 13
Tutorial B Analysis of Hurricane Data (Hurrdata.sta) Using the Statistica Data Miner 13
Tutorial C Predicting Student Success at High-Stakes Nursing Examinations (NCLEX) Using SPSS Modeler and Statistica Data Miner 13
Tutorial D Constructing a Histogram Using MidWest Company Personality Data Using KNIME
Tutorial E Feature Selection Using KNIME
Tutorial F Medical/Business Tutorial Using Statistica Data Miner 13
Tutorial G A KNIME Exercise, Using Alzheimer's Training Data of Tutorial F (RAN note: This tutorial refers to the data used in Tutorial I, and it should be changed to refer to Tutorial F. I propose a new title: Tutorial G Medical/Business Tutorial with Tutorial F Data Using KNIME.
Tutorial H Data Prep 1-1: Merging Data Sources Using KNIME
Tutorial I Data Prep 1-2: Data Description Using KNIME
Tutorial J Data Prep 2-1: Data Cleaning and Recoding Using KNIME
Tutorial K Data Prep 2-2: Dummy Coding Category Variables Using KNIME
Tutorial L Data Prep 2-3: Outlier Handling Using KNIME
Tutorial M Data Prep 3-1: Filling Missing Values With Constants Using KNIME
Tutorial N Data Prep 3-2: Filling Missing Values With Formulas Using KNIME
Tutorial O Data Prep 3-3: Filling Missing Values With a Model Using KNIME

Back Matter:
Appendix-A - Listing of TUTORIALS and other RESOUCES on this book's COMPANION WEB PAGE
Appendix B - Instructions on HOW TO USE this book's COMPANION WEB PAGE
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
<p>business data; statistical analysis; CRISP-DM; SEMMA text mining; Clementine interface</p>