Deterministic, Stochastic, and Deep Learning Methods for Computational Electromagnetics

Deterministic, Stochastic, and Deep Learning Methods for Computational Electromagnetics

Cai, Wei

Springer Nature Switzerland AG

02/2025

559

Dura

9789819600991

Pré-lançamento - envio 15 a 20 dias após a sua edição

Descrição não disponível.
Dielectric constant and fluctuation formulae for molecular dynamics.- Poisson-Boltzmann electrostatics and analytical approximations.- Numerical methods for Poisson-Boltzmann equations.- Random walk stochastic methods for boundary value problems.- Deep Neural Network for Solving PDEs.- Fast algorithms for long-range interactions.- Fast multipole methods for long-range interactions in layered media.- Maxwell equations, potentials, and physical/artificial boundary conditions.- Dyadic Green's functions in layered media.- High-order methods for surface electromagnetic integral equations.- High-order hierarchical N?ed?elec edge elements.- Time-domain methods - discontinuous Galerkin method and Yee scheme.- Scattering in periodic structures and surface plasmons.- Schr? odinger equations for waveguides and quantum dots.- Quantum electron transport in semiconductors.- Non-equilibrium Green's function (NEGF) methods for transport.- Numerical methods for Wigner quantum transport.- Hydrodynamic electron transport and finite difference methods.- Transport models in plasma media and numerical methods.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Fast multipole methods;Feynman-kac formula based probabilistic methods for PDEs;Deep neural network learning algorithms for PDEs;Boundary integral methods;Discontinuous Galerkin methods;Nedelec finite element methods;WENO finite difference method;Quantum Wigner equations;Non-equilibrim Green's function methods;Particle-in-cell method;Machine Learning