3D Interconnect Architectures for Heterogeneous Technologies
portes grátis
3D Interconnect Architectures for Heterogeneous Technologies
Modeling and Optimization
Bamberg, Lennart; Joseph, Jan Moritz; Garcia-Ortiz, Alberto; Pionteck, Thilo
Springer Nature Switzerland AG
06/2022
395
Dura
Inglês
9783030982287
15 a 20 dias
799
Descrição não disponível.
Part I Introduction.- 1 Introduction to 3D Technologies.- 1.1 Motivation for Heterogenous 3D ICs.- 1.2 3D Technologies.- 1.3 TSV Capacitances-A Problem Resistant to Scaling.- 1.4 Conclusion.- 2 Interconnect Architectures for 3D Technologies.- 2.1 Interconnect Architectures.- 2.2 Overview of Interconnect Architectures for 3D ICs.- 2.3 Three-dimensional Networks on chips.- 2.4 Conclusion.- Part II 3D Technology Modeling.- 3 Power and Performance Formulas.- 3.1 High-Level Formula for the Power Consumption.- 3.2 High-Level Formula for the Propagation Delay.- 3.3 Matrix Formulations.- 3.4 Evaluation.- 3.5 Conclusion.- 4 Capacitance Estimation.- 4.1 Existing Capacitance Models.- 4.2 Edge and MOS Effects on the TSV Capacitances.- 4.3 TSV Capacitance Model.- 4.4 Evaluation.- 4.5 Conclusion.- Part III System Modeling.- xiii.- xiv Contents.- 5 Application and Simulation Models.- 5.1 Overview of the Modeling Approach.- 5.2 Application Traffic Model.- 5.3 Simulation Model of 3D NoCs.- 5.4 Simulator Interfaces.- 5.5 Conclusion.- 6 Bit-level Statistics.- 6.1 Existing Approaches to Estimate the Bit-Level Statistics for.- Single Data Streams.- 6.2 Data-Stream Multiplexing.- 6.3 Bit-Level Statistics with Data-Stream Multiplexing.- 6.4 Evaluation.- 6.5 Conclusion.- 7 Ratatoskr Framework.- 7.1 Ratatoskr for Practitioners.- 7.2 Implementation.- 7.3 Evaluation.- 7.4 Case Study: Link Power Estimation and Optimization.- 7.5 Conclusion.- Part IV 3D-Interconnect Optimization.- 8 Low-Power Technique for 3D Interconnects.- 8.1 Fundamental Idea.- 8.2 Power-Optimal TSV assignment.- 8.3 Systematic Net-to-TSV Assignments.- 8.4 Combination with Traditional Low-Power Codes.- 8.5 Evaluation.- 8.6 Conclusion.- 9 Low-Power Technique for High-Performance 3D.- Interconnects..- 9.1 Edge-Effect-Aware Crosstalk Classification.- 9.2 Existing Approaches and Their Limitations.- 9.3 Proposed Technique.- 9.4 Extension to a Low-Power3D CAC.- 9.5 Evaluation.- 9.6 Conclusion.- 10 Low-Power Technique for High-Performance 3D.- Interconnects (Misaligned).- 10.1 Temporal-Misalignment Effect on the Crosstalk.- 10.2 Exploiting Misalignment to Improve the Performance.- 10.3 Effect on the TSV Power Consumption.- Contents xv.- 10.4 Evaluation.- 10.5 Conclusion.- 11 Low-Power Technique for Yield-Enhanced 3D Interconnects.- 11.1 Existing TSV Yield-Enhancement Techniques.- 11.2 Preliminaries-Logical Impact of TSV Faults.- 11.3 Fundamental Idea.- 11.4 Formal Problem Description.- 11.5 TSV Redundancy Schemes.- 11.6 Evaluation.- 11.7 Case Study.- 11.8 Conclusion.- Part V NoC Optimization for Heterogeneous 3D Integration.- 12 Heterogeneous Buffering for 3D NoCs251.- 12.1 Buffer Distributions and Depths.- 12.2 Routers with Optimized Buffer Distribution.- 12.3 Routers with Optimized Buffer Depths.- 12.4 Evaluation.- 12.5 Discussion.- 12.6 Conclusion.- 13 Heterogeneous Routing for 3D NoCs.- 13.1 Heterogeneity and Routing.- 13.2 Modeling Heterogeneous Technologies.- 13.3 Modeling Communication.- 13.4 Routing Limitations from Heterogeneity.- 13.5 Heterogeneous Routing Algorithms.- 13.6 Heterogeneous Router Architectures.- 13.7 Low-Power Routing in Heterogeneous 3D ICs.- 13.8 Evaluation.- 13.9 Discussion.- 13.10Conclusion.- 14 Heterogeneous Virtualisation for 3D NoCs.- 14.1 Problem Description.- 14.2 Heterogeneous Microarchitectures Exploiting Traffic Imbalance.- 14.3 Evaluation.- 14.4 Conclusion.- 15 Network Synthesis and SoC Floor Planning.- 15.1 Fundamental Idea.- 15.2 Modelling and Optimization.- 15.3 Mixed-Integer Linear Program.- 15.4 Heuristic Solution.- xvi Contents.- 15.5 Evaluation.- 15.6 Conclusion.- Part VI Finale.- 16 Conclusion.- 16.1 Putting it all together.- 16.2 Impact on Future Work.- A Appendix.- B Pseudo Codes.- C Method to Calculate the Depletion-Region Widths.- D Modeling Logical OR Relations.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Three-dimensional integrated circuit design;3D Integration in VLSI Circuits;3D integration for NoC-based SoC;cross-layer optimization of 3D interconnect;heterogeneous 3D IC technologies
Part I Introduction.- 1 Introduction to 3D Technologies.- 1.1 Motivation for Heterogenous 3D ICs.- 1.2 3D Technologies.- 1.3 TSV Capacitances-A Problem Resistant to Scaling.- 1.4 Conclusion.- 2 Interconnect Architectures for 3D Technologies.- 2.1 Interconnect Architectures.- 2.2 Overview of Interconnect Architectures for 3D ICs.- 2.3 Three-dimensional Networks on chips.- 2.4 Conclusion.- Part II 3D Technology Modeling.- 3 Power and Performance Formulas.- 3.1 High-Level Formula for the Power Consumption.- 3.2 High-Level Formula for the Propagation Delay.- 3.3 Matrix Formulations.- 3.4 Evaluation.- 3.5 Conclusion.- 4 Capacitance Estimation.- 4.1 Existing Capacitance Models.- 4.2 Edge and MOS Effects on the TSV Capacitances.- 4.3 TSV Capacitance Model.- 4.4 Evaluation.- 4.5 Conclusion.- Part III System Modeling.- xiii.- xiv Contents.- 5 Application and Simulation Models.- 5.1 Overview of the Modeling Approach.- 5.2 Application Traffic Model.- 5.3 Simulation Model of 3D NoCs.- 5.4 Simulator Interfaces.- 5.5 Conclusion.- 6 Bit-level Statistics.- 6.1 Existing Approaches to Estimate the Bit-Level Statistics for.- Single Data Streams.- 6.2 Data-Stream Multiplexing.- 6.3 Bit-Level Statistics with Data-Stream Multiplexing.- 6.4 Evaluation.- 6.5 Conclusion.- 7 Ratatoskr Framework.- 7.1 Ratatoskr for Practitioners.- 7.2 Implementation.- 7.3 Evaluation.- 7.4 Case Study: Link Power Estimation and Optimization.- 7.5 Conclusion.- Part IV 3D-Interconnect Optimization.- 8 Low-Power Technique for 3D Interconnects.- 8.1 Fundamental Idea.- 8.2 Power-Optimal TSV assignment.- 8.3 Systematic Net-to-TSV Assignments.- 8.4 Combination with Traditional Low-Power Codes.- 8.5 Evaluation.- 8.6 Conclusion.- 9 Low-Power Technique for High-Performance 3D.- Interconnects..- 9.1 Edge-Effect-Aware Crosstalk Classification.- 9.2 Existing Approaches and Their Limitations.- 9.3 Proposed Technique.- 9.4 Extension to a Low-Power3D CAC.- 9.5 Evaluation.- 9.6 Conclusion.- 10 Low-Power Technique for High-Performance 3D.- Interconnects (Misaligned).- 10.1 Temporal-Misalignment Effect on the Crosstalk.- 10.2 Exploiting Misalignment to Improve the Performance.- 10.3 Effect on the TSV Power Consumption.- Contents xv.- 10.4 Evaluation.- 10.5 Conclusion.- 11 Low-Power Technique for Yield-Enhanced 3D Interconnects.- 11.1 Existing TSV Yield-Enhancement Techniques.- 11.2 Preliminaries-Logical Impact of TSV Faults.- 11.3 Fundamental Idea.- 11.4 Formal Problem Description.- 11.5 TSV Redundancy Schemes.- 11.6 Evaluation.- 11.7 Case Study.- 11.8 Conclusion.- Part V NoC Optimization for Heterogeneous 3D Integration.- 12 Heterogeneous Buffering for 3D NoCs251.- 12.1 Buffer Distributions and Depths.- 12.2 Routers with Optimized Buffer Distribution.- 12.3 Routers with Optimized Buffer Depths.- 12.4 Evaluation.- 12.5 Discussion.- 12.6 Conclusion.- 13 Heterogeneous Routing for 3D NoCs.- 13.1 Heterogeneity and Routing.- 13.2 Modeling Heterogeneous Technologies.- 13.3 Modeling Communication.- 13.4 Routing Limitations from Heterogeneity.- 13.5 Heterogeneous Routing Algorithms.- 13.6 Heterogeneous Router Architectures.- 13.7 Low-Power Routing in Heterogeneous 3D ICs.- 13.8 Evaluation.- 13.9 Discussion.- 13.10Conclusion.- 14 Heterogeneous Virtualisation for 3D NoCs.- 14.1 Problem Description.- 14.2 Heterogeneous Microarchitectures Exploiting Traffic Imbalance.- 14.3 Evaluation.- 14.4 Conclusion.- 15 Network Synthesis and SoC Floor Planning.- 15.1 Fundamental Idea.- 15.2 Modelling and Optimization.- 15.3 Mixed-Integer Linear Program.- 15.4 Heuristic Solution.- xvi Contents.- 15.5 Evaluation.- 15.6 Conclusion.- Part VI Finale.- 16 Conclusion.- 16.1 Putting it all together.- 16.2 Impact on Future Work.- A Appendix.- B Pseudo Codes.- C Method to Calculate the Depletion-Region Widths.- D Modeling Logical OR Relations.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.