Python for Probability, Statistics, and Machine Learning

Python for Probability, Statistics, and Machine Learning

Unpingco, Jose

Springer International Publishing AG

11/2022

509

Dura

Inglês

9783031046476

15 a 20 dias

1047

Descrição não disponível.
Introduction.- Part 1 Getting Started with Scientific Python.- Installation and Setup.- Numpy.- Matplotlib.- Ipython.- Jupyter Notebook.- Scipy.- Pandas.- Sympy.- Interfacing with Compiled Libraries.- Integrated Development Environments.- Quick Guide to Performance and Parallel Programming.- Other Resources.- Part 2 Probability.- Introduction.- Projection Methods.- Conditional Expectation as Projection.- Conditional Expectation and Mean Squared Error.- Worked Examples of Conditional Expectation and Mean Square Error Optimization.- Useful Distributions.- Information Entropy.- Moment Generating Functions.- Monte Carlo Sampling Methods.- Useful Inequalities.- Part 3 Statistics.- Python Modules for Statistics.- Types of Convergence.- Estimation Using Maximum Likelihood.- Hypothesis Testing and P-Values.- Confidence Intervals.- Linear Regression.- Maximum A-Posteriori.- Robust Statistics.- Bootstrapping.- Gauss Markov.- Nonparametric Methods.- Survival Analysis.- Part 4 Machine Learning.- Introduction.- Python Machine Learning Modules.- Theory of Learning.- Decision Trees.- Boosting Trees.- Logistic Regression.- Generalized Linear Models.- Regularization.- Support Vector Machines.- Dimensionality Reduction.- Clustering.- Ensemble Methods.- Deep Learning.- Notation.- References.- Index.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
IPython Notebooks;Machine Learning;Probability and Statistics;Scientific Python;Open Source Python Toolchain;Sequentially Related Random Events;Mathematical Objects;Numerical Computation and Visualization;Statistical Estimation