Productive and Efficient Data Science with Python
portes grátis
Productive and Efficient Data Science with Python
With Modularizing, Memory profiles, and Parallel/GPU Processing
Sarkar, Tirthajyoti
APress
07/2022
383
Mole
Inglês
9781484281208
15 a 20 dias
773
Descrição não disponível.
Chapter 1: What is Productive and Efficient Data Science.- Chapter 2: Better Programming Principles for Efficient Data Science.- Chapter 3: How to Use Python Data Science Packages more Productively.- Chapter 4: Writing Machine Learning Code More Productively.- Chapter 5: Modular and Productive Deep Learning Code.- Chapter 6: Build Your Own Machine Learning Estimator/Package.- Chapter 7: Some Cool Utility Packages.- Chapter 8: Testing the Machine Learning Code.- Chapter 9: Memory and Timing Profiling.- Chapter 10: Scalable Data Science.- Chapter 11: Parallelized Data Science.- Chapter 12: GPU-Based Data Science for High Productivity.- Chapter 13: Other Useful Skills to Master.- Chapter 14: Wrapping It Up.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Data Science;Python;Machine Learning;Data Science Pipeline;High Performance Computing;Parallel Processing;Object Oriented Programming;Numpy;Pandas;Matplotlib;Seaborn;Keras;Scikit-Learn
Chapter 1: What is Productive and Efficient Data Science.- Chapter 2: Better Programming Principles for Efficient Data Science.- Chapter 3: How to Use Python Data Science Packages more Productively.- Chapter 4: Writing Machine Learning Code More Productively.- Chapter 5: Modular and Productive Deep Learning Code.- Chapter 6: Build Your Own Machine Learning Estimator/Package.- Chapter 7: Some Cool Utility Packages.- Chapter 8: Testing the Machine Learning Code.- Chapter 9: Memory and Timing Profiling.- Chapter 10: Scalable Data Science.- Chapter 11: Parallelized Data Science.- Chapter 12: GPU-Based Data Science for High Productivity.- Chapter 13: Other Useful Skills to Master.- Chapter 14: Wrapping It Up.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.