Nanostructured Lithium-ion Battery Materials
Nanostructured Lithium-ion Battery Materials
Synthesis, Characterization, and Applications
Thomas, Sabu; Savadogo, Oumarou; Gueye, Amadou Belal; Maria, Hanna J.
Elsevier - Health Sciences Division
11/2024
660
Mole
9780443133381
Pré-lançamento - envio 15 a 20 dias após a sua edição
1. Introduction and History of Lithium-ion Batteries
2. Electrochemistry and Basic Reaction Mechanism of Lithium-ion Batteries
3. Advantages and Disadvantages of Lithium-ion Batteries
4. Characterization Methods for Lithium-ion Batteries
Part II: Nanostructured Cathode Materials for Li-ion Batteries
5. Hollow Carbon Spheres and Their Hybrid Nanomaterials as Cathode Materials
6. Nanostructured Conductive Polymers as Active Electrode Composites
7. Nanostructured Metal-Oxides as Cathode Materials
Part III: Nanostructured Electrolyte Materials for Li-ion Batteries
8. Aqueous Electrolyte for Li-ion Batteries
9. Non-aqueous Electrolyte for Li-ion Batteries
10. Ionic Liquid Electrolyte for Li-ion Batteries
11. Hybrid Electrolyte for Li-ion Batteries
Part IV: Nanostructured Separator Materials for Li-ion Batteries
12. Functionalized Polyolefin Separators
13. Nanostructures Separators Based on Non-Polyolefin Polymers
Part V: Nanostructured Anode Materials for Li-ion Batteries
14. CNT-Metal Oxide Composites as Cathode Materials
15. Carbonaceous Nanostructured Materials as Anodes
16. Titanium based Oxides as Anodes
17. Metal Alloys Materials as Anodes
18. Nanostructured Transition Metal Oxides as Anodes
19. MXene-based Nanomaterials as Anode Materials
20. Lignocellulosic Biomass Generated Activated Carbon Synthesis and its Application as an Anode Material for Lithium Ion Batteries.
Part VI: Future Outlook and Challenges
21. Lithium Ion Batteries: From Lab to Industry and Safety
22. Life-Cycle Analysis of Lithium-Ion Batteries
23. Lithium-Ion Batteries: Future Market Challenges and Recycling
1. Introduction and History of Lithium-ion Batteries
2. Electrochemistry and Basic Reaction Mechanism of Lithium-ion Batteries
3. Advantages and Disadvantages of Lithium-ion Batteries
4. Characterization Methods for Lithium-ion Batteries
Part II: Nanostructured Cathode Materials for Li-ion Batteries
5. Hollow Carbon Spheres and Their Hybrid Nanomaterials as Cathode Materials
6. Nanostructured Conductive Polymers as Active Electrode Composites
7. Nanostructured Metal-Oxides as Cathode Materials
Part III: Nanostructured Electrolyte Materials for Li-ion Batteries
8. Aqueous Electrolyte for Li-ion Batteries
9. Non-aqueous Electrolyte for Li-ion Batteries
10. Ionic Liquid Electrolyte for Li-ion Batteries
11. Hybrid Electrolyte for Li-ion Batteries
Part IV: Nanostructured Separator Materials for Li-ion Batteries
12. Functionalized Polyolefin Separators
13. Nanostructures Separators Based on Non-Polyolefin Polymers
Part V: Nanostructured Anode Materials for Li-ion Batteries
14. CNT-Metal Oxide Composites as Cathode Materials
15. Carbonaceous Nanostructured Materials as Anodes
16. Titanium based Oxides as Anodes
17. Metal Alloys Materials as Anodes
18. Nanostructured Transition Metal Oxides as Anodes
19. MXene-based Nanomaterials as Anode Materials
20. Lignocellulosic Biomass Generated Activated Carbon Synthesis and its Application as an Anode Material for Lithium Ion Batteries.
Part VI: Future Outlook and Challenges
21. Lithium Ion Batteries: From Lab to Industry and Safety
22. Life-Cycle Analysis of Lithium-Ion Batteries
23. Lithium-Ion Batteries: Future Market Challenges and Recycling