Modeling of Complex Dynamic Systems
Modeling of Complex Dynamic Systems
Fundamentals and Applications
Petkovic, Marko D.; Stojanovic, Vladimir; Deng, Jian; Ristic, Marko A.
Elsevier - Health Sciences Division
04/2025
550
Mole
Inglês
9780443239427
Pré-lançamento - envio 15 a 20 dias após a sua edição
1. Mathematical methods and procedures in the analysis of stability of vibrations of complex moving objects
2. Mathematical methods and applications in the analysis of nonlinear vibrations
3. Mathematical methods in stochastic stability of mechanical systems
Part II: Stability of vibrations of complex moving objects: Modeling and applications
4. Stabilization and critical velocity of a moving mass
5. Stability of vibration of a complex discrete oscillator moving at an overcritical speed
6. Vibrational benefits of a new stabilizer in moving coupled vehicles
7. Dynamics and stability of a complex rail vehicle system
8. Modeling of a three-part viscoelastic foundation and its effect on dynamic stability
9. Vibrational instability in a complex moving object: Innovative approaches to elastically damped connections between car body components and supports
Part III: Nonlinear vibrations: Stabilizing phenomena and applications
10. Nonlinear amplitude analysis of shear deformable beams supported by an elastic foundation with variable discontinuity
11. Nonlinear vibrational characteristics of damaged beams resting on a Pasternak foundation
12. The purpose of an arch in the stability of nonlinear vibrations of coupled structures
13. Quantitative effect of an axial load on the amplitude stability of rotating nano-beams
14. Coupled multiple plate systems and their stability characteristics
Part IV: Stochastic stability of structures and mechanical systems: Methodology and examples
15. Moment Lyapunov exponents and stochastic stability of vibrationally isolated laminated plates
16. Higher-order stochastic averaging method in fractional stochastic dynamics
17. Parametric stochastic stability of viscoelastic rotating shafts
18. Stochastic stability of circular cylindrical shells
19. Generalized transformations for MDOF stochastic systems
Part V: From traditional methods to Artificial Intelligence
20. Modeling and applications of markers in machine learning and technical practice
1. Mathematical methods and procedures in the analysis of stability of vibrations of complex moving objects
2. Mathematical methods and applications in the analysis of nonlinear vibrations
3. Mathematical methods in stochastic stability of mechanical systems
Part II: Stability of vibrations of complex moving objects: Modeling and applications
4. Stabilization and critical velocity of a moving mass
5. Stability of vibration of a complex discrete oscillator moving at an overcritical speed
6. Vibrational benefits of a new stabilizer in moving coupled vehicles
7. Dynamics and stability of a complex rail vehicle system
8. Modeling of a three-part viscoelastic foundation and its effect on dynamic stability
9. Vibrational instability in a complex moving object: Innovative approaches to elastically damped connections between car body components and supports
Part III: Nonlinear vibrations: Stabilizing phenomena and applications
10. Nonlinear amplitude analysis of shear deformable beams supported by an elastic foundation with variable discontinuity
11. Nonlinear vibrational characteristics of damaged beams resting on a Pasternak foundation
12. The purpose of an arch in the stability of nonlinear vibrations of coupled structures
13. Quantitative effect of an axial load on the amplitude stability of rotating nano-beams
14. Coupled multiple plate systems and their stability characteristics
Part IV: Stochastic stability of structures and mechanical systems: Methodology and examples
15. Moment Lyapunov exponents and stochastic stability of vibrationally isolated laminated plates
16. Higher-order stochastic averaging method in fractional stochastic dynamics
17. Parametric stochastic stability of viscoelastic rotating shafts
18. Stochastic stability of circular cylindrical shells
19. Generalized transformations for MDOF stochastic systems
Part V: From traditional methods to Artificial Intelligence
20. Modeling and applications of markers in machine learning and technical practice