Mathematical Aspects of Deep Learning
portes grátis
Mathematical Aspects of Deep Learning
Kutyniok, Gitta; Grohs, Philipp
Cambridge University Press
12/2022
492
Dura
Inglês
9781316516782
15 a 20 dias
Descrição não disponível.
1. The modern mathematics of deep learning Julius Berner, Philipp Grohs, Gitta Kutyniok and Philipp Petersen; 2. Generalization in deep learning Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio; 3. Expressivity of deep neural networks Ingo Guehring, Mones Raslan and Gitta Kutyniok; 4. Optimization landscape of neural networks Rene Vidal, Zhihui Zhu and Benjamin D. Haeffele; 5. Explaining the decisions of convolutional and recurrent neural networks Wojciech Samek, Leila Arras, Ahmed Osman, Gregoire Montavon and Klaus-Robert Mueller; 6. Stochastic feedforward neural networks: universal approximation Thomas Merkh and Guido Montufar; 7. Deep learning as sparsity enforcing algorithms A. Aberdam and J. Sulam; 8. The scattering transform Joan Bruna; 9. Deep generative models and inverse problems Alexandros G. Dimakis; 10. A dynamical systems and optimal control approach to deep learning Weinan E, Jiequn Han and Qianxiao Li; 11. Bridging many-body quantum physics and deep learning via tensor networks Yoav Levine, Or Sharir, Nadav Cohen and Amnon Shashua.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
1. The modern mathematics of deep learning Julius Berner, Philipp Grohs, Gitta Kutyniok and Philipp Petersen; 2. Generalization in deep learning Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio; 3. Expressivity of deep neural networks Ingo Guehring, Mones Raslan and Gitta Kutyniok; 4. Optimization landscape of neural networks Rene Vidal, Zhihui Zhu and Benjamin D. Haeffele; 5. Explaining the decisions of convolutional and recurrent neural networks Wojciech Samek, Leila Arras, Ahmed Osman, Gregoire Montavon and Klaus-Robert Mueller; 6. Stochastic feedforward neural networks: universal approximation Thomas Merkh and Guido Montufar; 7. Deep learning as sparsity enforcing algorithms A. Aberdam and J. Sulam; 8. The scattering transform Joan Bruna; 9. Deep generative models and inverse problems Alexandros G. Dimakis; 10. A dynamical systems and optimal control approach to deep learning Weinan E, Jiequn Han and Qianxiao Li; 11. Bridging many-body quantum physics and deep learning via tensor networks Yoav Levine, Or Sharir, Nadav Cohen and Amnon Shashua.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.