Magnetic Resonators
portes grátis
Magnetic Resonators
Feedback with Magnetic Field and Magnetic Cavity
Nikhil Kumar, C. S.
Springer Verlag, Singapore
10/2022
92
Mole
Inglês
9789811961755
15 a 20 dias
219
Descrição não disponível.
1 - Introduction
1 1.1 Magnonic devices
1 1.1.1 Unconventional Computing
3 1.1.2 Hybrid magnonics and Magnon spintronics
4 1.1.3 STNO configurations
6 1.1.4 STNO device principle
8 1.1.5 Mutual synchronization of STNOs
8 1.2 Landau - Lifshitz - Gilbert - Slonczewski equation
94 1.2.1 Numerical Methods
10 1.2.2 Finite Difference and Finite Element method
14 Summary
2- Analytical model for a magnonic ring resonator
2.1 Geometry and analysis
2.2 Dispersion relation of curved magnonic waveguide
2.3 Validations
2.4 Modes in a magnonic ring
3 - Magnonic spectra in 2D antidot magnonic crystals with ring
3.1 Plane wave method
3.1.1 Convergence
3.2 Eigenmodes
3.3 Micromagnetic simulations
3.3.1 Magnonic spectra
3.3.2 Antidot magnonic crystal waveguide with linear defect
4 - Magnetic resonators with magnetic field feedback
4. 1 Introduction
4. 1 Problem statement
4. 2 Micromagnetic simulation without magnetic field feedback
4.3 Free layer model
4.4 Free layer Hysteresis loops
4.5 Ferromagnetic resonance frequency versus applied field
4.6 FMR versus applied field for different in plane and out of plane anisotropy FMR versus applied field for different out of plane anisotropy
4.7 Current dependence on resonance frequency
4.8 Spintronic oscillators with magnetic field feedback
4.9 Spin wave dynamics with magnetic field feedback
4.10 Spin wave dynamics at 300 K
4.11 Linewidth (Without magnetic field feedback)
4.4 Linewidth (with magnetic field feedback)
4.5 Spin wave spectra with different delay
5 - Magnetic resonators magnetic cavity feedback
5.1- I. Introduction
5.1.2. Micromagnetic Simulations
5.1.3 Method of Calculation
5.1.4 Band structure of antidot MC
5.1.5 Spin wave injection on Py film using an array of nano contacts
5.1.6 Fabry Perot model
5.1.7 Quality Factor Calculation
1 1.1 Magnonic devices
1 1.1.1 Unconventional Computing
3 1.1.2 Hybrid magnonics and Magnon spintronics
4 1.1.3 STNO configurations
6 1.1.4 STNO device principle
8 1.1.5 Mutual synchronization of STNOs
8 1.2 Landau - Lifshitz - Gilbert - Slonczewski equation
94 1.2.1 Numerical Methods
10 1.2.2 Finite Difference and Finite Element method
14 Summary
2- Analytical model for a magnonic ring resonator
2.1 Geometry and analysis
2.2 Dispersion relation of curved magnonic waveguide
2.3 Validations
2.4 Modes in a magnonic ring
3 - Magnonic spectra in 2D antidot magnonic crystals with ring
3.1 Plane wave method
3.1.1 Convergence
3.2 Eigenmodes
3.3 Micromagnetic simulations
3.3.1 Magnonic spectra
3.3.2 Antidot magnonic crystal waveguide with linear defect
4 - Magnetic resonators with magnetic field feedback
4. 1 Introduction
4. 1 Problem statement
4. 2 Micromagnetic simulation without magnetic field feedback
4.3 Free layer model
4.4 Free layer Hysteresis loops
4.5 Ferromagnetic resonance frequency versus applied field
4.6 FMR versus applied field for different in plane and out of plane anisotropy FMR versus applied field for different out of plane anisotropy
4.7 Current dependence on resonance frequency
4.8 Spintronic oscillators with magnetic field feedback
4.9 Spin wave dynamics with magnetic field feedback
4.10 Spin wave dynamics at 300 K
4.11 Linewidth (Without magnetic field feedback)
4.4 Linewidth (with magnetic field feedback)
4.5 Spin wave spectra with different delay
5 - Magnetic resonators magnetic cavity feedback
5.1- I. Introduction
5.1.2. Micromagnetic Simulations
5.1.3 Method of Calculation
5.1.4 Band structure of antidot MC
5.1.5 Spin wave injection on Py film using an array of nano contacts
5.1.6 Fabry Perot model
5.1.7 Quality Factor Calculation
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Magnonic devices;Magnon spintronics;Spin-Torque Nano Oscillators(STNOs);Micromagnetic simulations;Finite Element Method (FEM);Magnonic ring resonator;Magnonic waveguide;Magnonic crystals;Fabry Perot model;Spintronic oscillators
1 - Introduction
1 1.1 Magnonic devices
1 1.1.1 Unconventional Computing
3 1.1.2 Hybrid magnonics and Magnon spintronics
4 1.1.3 STNO configurations
6 1.1.4 STNO device principle
8 1.1.5 Mutual synchronization of STNOs
8 1.2 Landau - Lifshitz - Gilbert - Slonczewski equation
94 1.2.1 Numerical Methods
10 1.2.2 Finite Difference and Finite Element method
14 Summary
2- Analytical model for a magnonic ring resonator
2.1 Geometry and analysis
2.2 Dispersion relation of curved magnonic waveguide
2.3 Validations
2.4 Modes in a magnonic ring
3 - Magnonic spectra in 2D antidot magnonic crystals with ring
3.1 Plane wave method
3.1.1 Convergence
3.2 Eigenmodes
3.3 Micromagnetic simulations
3.3.1 Magnonic spectra
3.3.2 Antidot magnonic crystal waveguide with linear defect
4 - Magnetic resonators with magnetic field feedback
4. 1 Introduction
4. 1 Problem statement
4. 2 Micromagnetic simulation without magnetic field feedback
4.3 Free layer model
4.4 Free layer Hysteresis loops
4.5 Ferromagnetic resonance frequency versus applied field
4.6 FMR versus applied field for different in plane and out of plane anisotropy FMR versus applied field for different out of plane anisotropy
4.7 Current dependence on resonance frequency
4.8 Spintronic oscillators with magnetic field feedback
4.9 Spin wave dynamics with magnetic field feedback
4.10 Spin wave dynamics at 300 K
4.11 Linewidth (Without magnetic field feedback)
4.4 Linewidth (with magnetic field feedback)
4.5 Spin wave spectra with different delay
5 - Magnetic resonators magnetic cavity feedback
5.1- I. Introduction
5.1.2. Micromagnetic Simulations
5.1.3 Method of Calculation
5.1.4 Band structure of antidot MC
5.1.5 Spin wave injection on Py film using an array of nano contacts
5.1.6 Fabry Perot model
5.1.7 Quality Factor Calculation
1 1.1 Magnonic devices
1 1.1.1 Unconventional Computing
3 1.1.2 Hybrid magnonics and Magnon spintronics
4 1.1.3 STNO configurations
6 1.1.4 STNO device principle
8 1.1.5 Mutual synchronization of STNOs
8 1.2 Landau - Lifshitz - Gilbert - Slonczewski equation
94 1.2.1 Numerical Methods
10 1.2.2 Finite Difference and Finite Element method
14 Summary
2- Analytical model for a magnonic ring resonator
2.1 Geometry and analysis
2.2 Dispersion relation of curved magnonic waveguide
2.3 Validations
2.4 Modes in a magnonic ring
3 - Magnonic spectra in 2D antidot magnonic crystals with ring
3.1 Plane wave method
3.1.1 Convergence
3.2 Eigenmodes
3.3 Micromagnetic simulations
3.3.1 Magnonic spectra
3.3.2 Antidot magnonic crystal waveguide with linear defect
4 - Magnetic resonators with magnetic field feedback
4. 1 Introduction
4. 1 Problem statement
4. 2 Micromagnetic simulation without magnetic field feedback
4.3 Free layer model
4.4 Free layer Hysteresis loops
4.5 Ferromagnetic resonance frequency versus applied field
4.6 FMR versus applied field for different in plane and out of plane anisotropy FMR versus applied field for different out of plane anisotropy
4.7 Current dependence on resonance frequency
4.8 Spintronic oscillators with magnetic field feedback
4.9 Spin wave dynamics with magnetic field feedback
4.10 Spin wave dynamics at 300 K
4.11 Linewidth (Without magnetic field feedback)
4.4 Linewidth (with magnetic field feedback)
4.5 Spin wave spectra with different delay
5 - Magnetic resonators magnetic cavity feedback
5.1- I. Introduction
5.1.2. Micromagnetic Simulations
5.1.3 Method of Calculation
5.1.4 Band structure of antidot MC
5.1.5 Spin wave injection on Py film using an array of nano contacts
5.1.6 Fabry Perot model
5.1.7 Quality Factor Calculation
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.