Introduction to Stochastic Finance with Market Examples
portes grátis
Introduction to Stochastic Finance with Market Examples
Privault, Nicolas
Taylor & Francis Ltd
12/2022
652
Dura
Inglês
9781032288260
15 a 20 dias
1383
Descrição não disponível.
Introduction. 1. Assets, Portfolios, and Arbitrage. 1.1. Portfolio Allocation and Short Selling. 1.2. Arbitrage. 1.3. Risk-Neutral Probability Measures. 1.4. Hedging of Contingent Claims. 1.5. Market Completeness. 1.6. Example: Binary Market. Exercises. 2. Discrete-Time Market Model. 2.1. Discrete-Time Compounding. 2.2. Arbitrage and Self-Financing Portfolios. 2.3. Contingent Claims. 2.4. Martingales and Conditional Expectations. 2.5. Market Completeness and Risk-Neutral Measures. 2.6. The Cox-Ross-Rubinstein (CRR) Market Model. Exercises. 3. Pricing and Hedging in Discrete Time. 3.1. Pricing Contingent Claims. 3.2. Pricing Vanilla Options in the CRR Model. 3.3. Hedging Contingent Claims. 3.4. Hedging Vanilla Options. 3.5. Hedging Exotic Options. 3.6. Convergence of the CRR Model. Exercises. 4. Brownian Motion and Stochastic Calculus. 4.1. Brownian Motion. 4.2. Three Constructions of Brownian Motion. 4.3. Wiener Stochastic Integral. 4.4. Ito Stochastic Integral. 4.5. Stochastic Calculus. Exercises. 5. Continuous-Time Market Model. 5.1. Asset Price Modeling. 5.2. Arbitrage and Risk-Neutral Measures. 5.3. Self-Financing Portfolio Strategies. 5.4. Two-Asset Portfolio Model. 5.5. Geometric Brownian Motion. Exercises. 6. Black-Scholes Pricing and Hedging. 6.1. The Black-Scholes PDE. 6.2. European Call Options. 6.3. European Put Options. 6.4. Market Terms and Data. 6.5. The Heat Equation. 6.6. Solution of the Black-Scholes PDE. Exercises. 7. Martingale Approach to Pricing and Hedging. 7.1. Martingale Property of the Ito Integral. 7.2. Risk-neutral Probability Measures. 7.3. Change of Measure and the Girsanov Theorem. 7.4. Pricing by the Martingale Method. 7.5. Hedging by the Martingale Method. Exercises. 8. Stochastic Volatility. 8.1. Stochastic Volatility Models. 8.2. Realized Variance Swaps. 8.3. Realized Variance Options. 8.4. European Options - PDE Method. 8.5. Perturbation Analysis. Exercises. 9. Volatility Estimation. 9.1. Historical Volatility. 9.2. Implied Volatility. 9.3. Local Volatility. 9.4. The VIX (R) Index. Exercises. 10. Maximum of Brownian motion. 10.1. Running Maximum of Brownian Motion. 10.2. The Reflection Principle. 10.3. Density of the Maximum of Brownian Motion. 10.4. Average of Geometric Brownian Extrema. Exercises. 11. Barrier Options. 11.1. Options on Extrema. 11.2. Knock-Out Barrier. 11.3. Knock-In Barrier. 11.4. PDE Method. 11.5. Hedging Barrier Options. Exercises. 12. Lookback Options. 12.1. The Lookback Put Option. 12.2. PDE Method. 12.3. The Lookback Call Option. 12.4. Delta Hedging for Lookback Options. Exercises. 13. Asian Options. 13.1. Bounds on Asian Option Prices. 13.2. Hartman-Watson Distribution. 13.3. Laplace Transform Method. 13.4. Moment Matching Approximations. 13.5. PDE Method. Exercises. 14. Optimal Stopping Theorem. 14.1. Filtrations and Information Flow. 14.2. Submartingales and Supermartingales. 14.3. Optimal Stopping Theorem. 14.4. Drifted Brownian Motion. Exercises. 15. American Options. 15.1. Perpetual American Put Options. 15.2. PDE Method for Perpetual Put Options. 15.3. Perpetual American Call Options. 15.4. Finite Expiration American Options. 15.5. PDE Method with Finite Expiration. Exercises. 16. Change of Numeraire and Forward Measures. 16.1. Notion of Numeraire. 16.2. Change of Numeraire. 16.3. Foreign Exchange. 16.4. Pricing Exchange Options. 16.5. Hedging by Change of Numeraire. Exercises. 17. Short Rates and Bond Pricing. 17.1. Vasicek model. 17.2. Affine Short Rate Models. 17.3. Zero-Coupon and Coupon Bonds. 17.4. Bond Pricing PDE. Exercises. 18. Forward Rates. 18.1. Construction of Forward Rates. 18.2. LIBOR/SOFR Swap Rates. 18.3. The HJM Model. 18.4. Yield Curve Modeling. 18.5. Two-Factor Model. 18.6. The BGM Model. Exercises. 19. Pricing of Interest Rate Derivatives. 19.1. Forward Measures and Tenor Structure. 19.2. Bond Options. 19.3. Caplet Pricing. 19.4. Forward Swap Measures. 19.5. Swaption Pricing. Exercises. 20. Stochastic Calculus for Jump Processes. 20.1. The Poisson Process. 20.2. Compound Poisson Process. 20.3. Stochastic Integrals and Ito Formula with Jumps. 20.4. Stochastic Differential Equations with Jumps. 20.5. Girsanov Theorem for Jump Processes. Exercises. 21. Pricing and Hedging in Jump Models. 21.1. Fitting the Distribution of Market Returns. 21.2. Risk-Neutral Probability Measures. 21.3. Pricing in Jump Models. 21.4. Exponential Levy Models. 21.5. Black-Scholes PDE with Jumps. 21.6. Mean-Variance Hedging with Jumps. Exercises. 22. Basic Numerical Methods. 22.1. Discretized Heat Equation. 22.2. Discretized Black-Scholes PDE. 22.3. Euler Discretization. 22.4. Milshtein Discretization. Exercises. Bibliography. Index
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Assets, Portfolios and Arbitrage;Discrete-Time Model;Pricing and Hedging;Brownian Motion;The Black-Scholes PDE;Estimation of Volatility;Black Scholes PDE;Risk Neutral Probability Measure;Stochastic Differential Equations;Strike Price;Geometric Brownian Motion;Conditional Expectations;Arbitrage Free Price;Riskless Asset;Finite Differences Methods;Risk Neutral Measure;Risky Asset;Call Option;Underlying Asset Price;Self-financing Portfolio;Lookback Options;Asset Price Process;Discounted Asset Price;Self-financing Condition;Option Price;Lookback Call Option;Delta Hedging Strategy;Market Option Prices;Local Volatility;Super Martingale;Option Price Data
Introduction. 1. Assets, Portfolios, and Arbitrage. 1.1. Portfolio Allocation and Short Selling. 1.2. Arbitrage. 1.3. Risk-Neutral Probability Measures. 1.4. Hedging of Contingent Claims. 1.5. Market Completeness. 1.6. Example: Binary Market. Exercises. 2. Discrete-Time Market Model. 2.1. Discrete-Time Compounding. 2.2. Arbitrage and Self-Financing Portfolios. 2.3. Contingent Claims. 2.4. Martingales and Conditional Expectations. 2.5. Market Completeness and Risk-Neutral Measures. 2.6. The Cox-Ross-Rubinstein (CRR) Market Model. Exercises. 3. Pricing and Hedging in Discrete Time. 3.1. Pricing Contingent Claims. 3.2. Pricing Vanilla Options in the CRR Model. 3.3. Hedging Contingent Claims. 3.4. Hedging Vanilla Options. 3.5. Hedging Exotic Options. 3.6. Convergence of the CRR Model. Exercises. 4. Brownian Motion and Stochastic Calculus. 4.1. Brownian Motion. 4.2. Three Constructions of Brownian Motion. 4.3. Wiener Stochastic Integral. 4.4. Ito Stochastic Integral. 4.5. Stochastic Calculus. Exercises. 5. Continuous-Time Market Model. 5.1. Asset Price Modeling. 5.2. Arbitrage and Risk-Neutral Measures. 5.3. Self-Financing Portfolio Strategies. 5.4. Two-Asset Portfolio Model. 5.5. Geometric Brownian Motion. Exercises. 6. Black-Scholes Pricing and Hedging. 6.1. The Black-Scholes PDE. 6.2. European Call Options. 6.3. European Put Options. 6.4. Market Terms and Data. 6.5. The Heat Equation. 6.6. Solution of the Black-Scholes PDE. Exercises. 7. Martingale Approach to Pricing and Hedging. 7.1. Martingale Property of the Ito Integral. 7.2. Risk-neutral Probability Measures. 7.3. Change of Measure and the Girsanov Theorem. 7.4. Pricing by the Martingale Method. 7.5. Hedging by the Martingale Method. Exercises. 8. Stochastic Volatility. 8.1. Stochastic Volatility Models. 8.2. Realized Variance Swaps. 8.3. Realized Variance Options. 8.4. European Options - PDE Method. 8.5. Perturbation Analysis. Exercises. 9. Volatility Estimation. 9.1. Historical Volatility. 9.2. Implied Volatility. 9.3. Local Volatility. 9.4. The VIX (R) Index. Exercises. 10. Maximum of Brownian motion. 10.1. Running Maximum of Brownian Motion. 10.2. The Reflection Principle. 10.3. Density of the Maximum of Brownian Motion. 10.4. Average of Geometric Brownian Extrema. Exercises. 11. Barrier Options. 11.1. Options on Extrema. 11.2. Knock-Out Barrier. 11.3. Knock-In Barrier. 11.4. PDE Method. 11.5. Hedging Barrier Options. Exercises. 12. Lookback Options. 12.1. The Lookback Put Option. 12.2. PDE Method. 12.3. The Lookback Call Option. 12.4. Delta Hedging for Lookback Options. Exercises. 13. Asian Options. 13.1. Bounds on Asian Option Prices. 13.2. Hartman-Watson Distribution. 13.3. Laplace Transform Method. 13.4. Moment Matching Approximations. 13.5. PDE Method. Exercises. 14. Optimal Stopping Theorem. 14.1. Filtrations and Information Flow. 14.2. Submartingales and Supermartingales. 14.3. Optimal Stopping Theorem. 14.4. Drifted Brownian Motion. Exercises. 15. American Options. 15.1. Perpetual American Put Options. 15.2. PDE Method for Perpetual Put Options. 15.3. Perpetual American Call Options. 15.4. Finite Expiration American Options. 15.5. PDE Method with Finite Expiration. Exercises. 16. Change of Numeraire and Forward Measures. 16.1. Notion of Numeraire. 16.2. Change of Numeraire. 16.3. Foreign Exchange. 16.4. Pricing Exchange Options. 16.5. Hedging by Change of Numeraire. Exercises. 17. Short Rates and Bond Pricing. 17.1. Vasicek model. 17.2. Affine Short Rate Models. 17.3. Zero-Coupon and Coupon Bonds. 17.4. Bond Pricing PDE. Exercises. 18. Forward Rates. 18.1. Construction of Forward Rates. 18.2. LIBOR/SOFR Swap Rates. 18.3. The HJM Model. 18.4. Yield Curve Modeling. 18.5. Two-Factor Model. 18.6. The BGM Model. Exercises. 19. Pricing of Interest Rate Derivatives. 19.1. Forward Measures and Tenor Structure. 19.2. Bond Options. 19.3. Caplet Pricing. 19.4. Forward Swap Measures. 19.5. Swaption Pricing. Exercises. 20. Stochastic Calculus for Jump Processes. 20.1. The Poisson Process. 20.2. Compound Poisson Process. 20.3. Stochastic Integrals and Ito Formula with Jumps. 20.4. Stochastic Differential Equations with Jumps. 20.5. Girsanov Theorem for Jump Processes. Exercises. 21. Pricing and Hedging in Jump Models. 21.1. Fitting the Distribution of Market Returns. 21.2. Risk-Neutral Probability Measures. 21.3. Pricing in Jump Models. 21.4. Exponential Levy Models. 21.5. Black-Scholes PDE with Jumps. 21.6. Mean-Variance Hedging with Jumps. Exercises. 22. Basic Numerical Methods. 22.1. Discretized Heat Equation. 22.2. Discretized Black-Scholes PDE. 22.3. Euler Discretization. 22.4. Milshtein Discretization. Exercises. Bibliography. Index
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Assets, Portfolios and Arbitrage;Discrete-Time Model;Pricing and Hedging;Brownian Motion;The Black-Scholes PDE;Estimation of Volatility;Black Scholes PDE;Risk Neutral Probability Measure;Stochastic Differential Equations;Strike Price;Geometric Brownian Motion;Conditional Expectations;Arbitrage Free Price;Riskless Asset;Finite Differences Methods;Risk Neutral Measure;Risky Asset;Call Option;Underlying Asset Price;Self-financing Portfolio;Lookback Options;Asset Price Process;Discounted Asset Price;Self-financing Condition;Option Price;Lookback Call Option;Delta Hedging Strategy;Market Option Prices;Local Volatility;Super Martingale;Option Price Data