Introduction to Lorentz Geometry
portes grátis
Introduction to Lorentz Geometry
Curves and Surfaces
Couto, Ivo Terek; Lymberopoulos, Alexandre
Taylor & Francis Ltd
08/2022
350
Mole
Inglês
9780367624118
15 a 20 dias
453
Descrição não disponível.
1. Welcome to Lorentz-Minkowski Space. 1.1. Pseudo-Euclidean Spaces. 1.2. Subspaces of R??. 1.3. Contextualization in Special Relativity. 1.4. Isometries in R??. 1.5. Investigating O1(2, R) And O1(3, R). 1.6 Cross Product in R??. 2. Local Theory of Curves. 2.1. Parametrized Curves in R??. 2.2. Curves in the Plane. 2.3. Curves in Space. 3. Surfaces in Space. 3.1. Basic Topology of Surfaces. 3.2. Casual type of Surfaces, First Fundamental Form. 3.3. Second Fundamental Form and Curvatures. 3.4. The Diagonalization Problem. 3.5. Curves in Surface. 3.6. Geodesics, Variational Methods and Energy. 3.7. The Fundamental Theorem of Surfaces. 4. Abstract Surfaces and Further Topics. 4.1. Pseudo-Riemannian Metrics. 4.2. Riemann's Classification Theorem. 4.3. Split-Complex Numbers and Critical Surfaces. 4.4 Digression: Completeness and Causality
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Lorentz-Minkowski space;abstract surfaces;revolution surface;mathematical language;Lorentz geometry
1. Welcome to Lorentz-Minkowski Space. 1.1. Pseudo-Euclidean Spaces. 1.2. Subspaces of R??. 1.3. Contextualization in Special Relativity. 1.4. Isometries in R??. 1.5. Investigating O1(2, R) And O1(3, R). 1.6 Cross Product in R??. 2. Local Theory of Curves. 2.1. Parametrized Curves in R??. 2.2. Curves in the Plane. 2.3. Curves in Space. 3. Surfaces in Space. 3.1. Basic Topology of Surfaces. 3.2. Casual type of Surfaces, First Fundamental Form. 3.3. Second Fundamental Form and Curvatures. 3.4. The Diagonalization Problem. 3.5. Curves in Surface. 3.6. Geodesics, Variational Methods and Energy. 3.7. The Fundamental Theorem of Surfaces. 4. Abstract Surfaces and Further Topics. 4.1. Pseudo-Riemannian Metrics. 4.2. Riemann's Classification Theorem. 4.3. Split-Complex Numbers and Critical Surfaces. 4.4 Digression: Completeness and Causality
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.