Introduction To Linear Algebra

Introduction To Linear Algebra

Computation, Application, and Theory

DeBonis, Mark J.

Taylor & Francis Ltd

03/2022

420

Dura

Inglês

9781032108988

15 a 20 dias

866

Descrição não disponível.
1. Examples of Vector Spaces. 1.1. First Vector Space: Tuples. 1.2. Dot Product. 1.3. Application: Geometry. 1.4. Second Vector Space: Matrices. 1.5. Matrix Multiplication. 2. Matrices and Linear Systems. 2.1. Systems of Linear Equations. 2.2. Gaussian Elimination. 2.3. Application: Markov Chains. 2.4. Application: The Simplex Method. 2.5. Elementary Matrices and Matrix Equivalence. 2.6. Inverse of a Matrix. 2.7. Application: The Simplex Method Revisited. 2.8. Homogeneous/Nonhomogeneous Systems and Rank. 2.9. Determinant. 2.10. Applications of the Determinant. 2.11. Application: Lu Factorization. 3. Vector Spaces. 3.1. Definition and Examples. 3.2. Subspace. 3.3. Linear Independence. 3.4. Span. 3.5. Basis and Dimension. 3.6. Subspaces Associated with a Matrix. 3.7. Application: Dimension Theorems. 4. Linear Transformations. 4.1. Definition and Examples. 4.2. Kernel and Image. 4.3. Matrix Representation. 4.4. Inverse and Isomorphism. 4.5. Similarity of Matrices. 4.6. Eigenvalues and Diagonalization. 4.7. Axiomatic Determinant. 4.8. Quotient Vector Space. 4.9. Dual Vector Space. 5. Inner Product Spaces. 5.1. Definition, Examples and Properties. 5.2. Orthogonal and Orthonormal. 5.3. Orthogonal Matrices. 5.4. Application: QR Factorization. 5.5. Schur Triangularization Theorem. 5.6. Orthogonal Projections and Best Approximation. 5.7. Real Symmetric Matrices. 5.8. Singular Value Decomposition. 5.9. Application: Least Squares Optimization. 6. Applications in Data Analytics. 6.1. Introduction. 6.2. Direction of Maximal Spread. 6.3. Principal Component Analysis. 6.4. Dimensionality Reduction. 6.5. Mahalanobis Distance. 6.6. Data Sphering. 6.7. Fisher Linear Discriminant Function. 6.8. Linear Discriminant Functions in Feature Space. 6.9. Minimal Square Error Linear Discriminant Function. 7. Quadratic Forms. 7.1. Introduction to Quadratic Forms. 7.2. Principal Minor Criterion. 7.3. Eigenvalue Criterion. 7.4. Application: Unconstrained Nonlinear Optimization. 7.5. General Quadratic Forms. Appendix A. Regular Matrices. Appendix B. Rotations and Reflections in Two Dimensions. Appendix C. Answers to Selected Exercises.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Linear;Algebra;Linear Algebra;Applications;Computations;textbook;linear algebraic computations;machine learning;data analytics;computational algebra;statistics;Fisher LDF;Data Set;Scatter Matrix;Truncated SVD;LDF;Mahalanobis Distance;Dimensional Plot;Skew Symmetric Matrix;Vector Space;PCA Direction;Prove Properties;Unit Vector Parallel;Dimensional Data;Truncated SVD Method;Additive Inverse;BDC;Initial Point;Square Matrix;Standard Basis Vectors;Feature Space;Terminal Point;Non-zero Singular Values;Orthogonal Matrix;Matrix Multiplication;Data Sphering