Compressed Sensing in Information Processing

Compressed Sensing in Information Processing

Kutyniok, Gitta; Rauhut, Holger; Kunsch, Robert J.

Birkhauser Verlag AG

10/2022

542

Dura

Inglês

9783031097447

15 a 20 dias

998

Descrição não disponível.
Hierarchical compressed sensing (G. Wunder).- Proof Methods for Robust Low-Rank Matrix Recovery (T. Fuchs).- New Challenges in Covariance Estimation: Multiple Structures and Coarse Quantization (J. Maly).- Sparse Deterministic and Stochastic Channels: Identification of Spreading Functions and Covariances (Dae Gwan Lee).- Analysis of Sparse Recovery Algorithms via the Replica Method (A. Bereyhi).- Unbiasing in Iterative Reconstruction Algorithms for Discrete Compressed Sensing (F.H. Fischer).- Recovery under Side Constraints (M. Pesavento).- Compressive Sensing and Neural Networks from a Statistical Learning Perspective (E. Schnoor).- Angular Scattering Function Estimation Using Deep Neural Networks (Y. Song).- Fast Radio Propagation Prediction with Deep Learning (R. Levie).- Active Channel Sparsification: Realizing Frequency Division Duplexing Massive MIMO with Minimal Overhead (M. B. Khalilsarai).- Atmospheric Radar Imaging Improvements Using Compressed Sensing and MIMO (J. O. Aweda).- Over-the-Air Computation for Distributed Machine Learning and Consensus in Large Wireless Networks (M. Frey).- Information Theory and Recovery Algorithms for Data Fusion in Earth Observation (M. Fornasier).- Sparse Recovery of Sound Fields Using Measurements from Moving Microphones (A. Mertins).- Compressed Sensing in the Spherical Near-Field to Far-Field Transformation (C. Culotta-Lopez).
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Compressed Sensing;Signal Processing;Random Matrix Theory;Sparsity;Information Processing