Bayesian Optimization
Bayesian Optimization
Theory and Practice Using Python
Liu, Peng
APress
03/2023
234
Mole
Inglês
9781484290620
15 a 20 dias
Descrição não disponível.
Chapter 1: Bayesian Optimization Overview.- Chapter 2: Gaussian Process.- Chapter 3: Bayesian Decision Theory and Expected Improvement.- Chapter 4 : Gaussian Process Regression with GPyTorch.- Chapter 5: Monte Carlo Acquisition Function with Sobol Sequences and Random Restart.- Chapter 6 : Knowledge Gradient: Nested Optimization versus One-shot Learning.- Chapter 7 : Case Study: Tuning CNN Learning Rate with BoTorch.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Python;Machine Learning;Bayesian optimization;hyper parameter tuning;Gaussian process;BoTorch
Chapter 1: Bayesian Optimization Overview.- Chapter 2: Gaussian Process.- Chapter 3: Bayesian Decision Theory and Expected Improvement.- Chapter 4 : Gaussian Process Regression with GPyTorch.- Chapter 5: Monte Carlo Acquisition Function with Sobol Sequences and Random Restart.- Chapter 6 : Knowledge Gradient: Nested Optimization versus One-shot Learning.- Chapter 7 : Case Study: Tuning CNN Learning Rate with BoTorch.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.