Adapting to Urban Heat
Adapting to Urban Heat
Strategies and Tools for Resilience in Low Carbon Cities
Santamouris, Mattheos; Galan Marin, Carmen; Naboni, Emanuele; Rivera Gomez, Carlos
Elsevier - Health Sciences Division
04/2025
250
Mole
Inglês
9780443289774
Pré-lançamento - envio 15 a 20 dias após a sua edição
1. A Rough Ride to Urban Resilience: Challenges and Design Opportunities in the Age of Climate Change
PART 2: UNDERSTANDING URBAN HEAT AND ITS IMPLICATIONS
2. Understanding Urban Heat within the Climate Change Realm.
3. Anticipatory Resilience in Urban and Architectural Design for Climate Change, Ecology, Health, and Decarbonization
4. Assessing the Costs and Benefits of Adaptation Strategies from an Economic Perspective
PART 3: TOOLS FOR DECODING AND CODING URBAN HEAT
5. The Role of Data Science in Developing Low-Carbon Cities with Improved Urban Heat Mitigation
6. Evaluating the Performance of Urban Heat Adaptation Strategy Measures Using Remote Sensing and GIS Technologies
7. Urban Heat Mitigation: Multiscale Modelling Techniques and Experimental Monitoring
PART 4: DESIGN FOR ADAPTING TO URBAN HEAT
8. Urban Heat Adaptation through Improved Architectural Energy-Efficiency
9. Harnessing the Power of Nature: Adaptation through Nature-Based Solutions
10. Adapting Urban Microclimates and Enhancing User Comfort: Strategies for Heat at the Neighborhood Scale
11. Modelling the Effect of Urban Form and Morphology on Local Climate and Heat Island Intensity
PART 5: CONCLUSION
12. Conclusions
1. A Rough Ride to Urban Resilience: Challenges and Design Opportunities in the Age of Climate Change
PART 2: UNDERSTANDING URBAN HEAT AND ITS IMPLICATIONS
2. Understanding Urban Heat within the Climate Change Realm.
3. Anticipatory Resilience in Urban and Architectural Design for Climate Change, Ecology, Health, and Decarbonization
4. Assessing the Costs and Benefits of Adaptation Strategies from an Economic Perspective
PART 3: TOOLS FOR DECODING AND CODING URBAN HEAT
5. The Role of Data Science in Developing Low-Carbon Cities with Improved Urban Heat Mitigation
6. Evaluating the Performance of Urban Heat Adaptation Strategy Measures Using Remote Sensing and GIS Technologies
7. Urban Heat Mitigation: Multiscale Modelling Techniques and Experimental Monitoring
PART 4: DESIGN FOR ADAPTING TO URBAN HEAT
8. Urban Heat Adaptation through Improved Architectural Energy-Efficiency
9. Harnessing the Power of Nature: Adaptation through Nature-Based Solutions
10. Adapting Urban Microclimates and Enhancing User Comfort: Strategies for Heat at the Neighborhood Scale
11. Modelling the Effect of Urban Form and Morphology on Local Climate and Heat Island Intensity
PART 5: CONCLUSION
12. Conclusions